Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Lett Appl Microbiol ; 75(5): 1346-1353, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-1992872

ABSTRACT

We previously reported a novel polymeric surface coating, namely, HaloFilm™ that can immobilize and extend the antimicrobial activity of chlorine on surfaces. In this study, we demonstrated the continuous antiviral efficacy of HaloFilm when applied on stainless steel and cotton gauze as two representative models for non-porous and porous surfaces against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Forty-eight hours post HaloFilm application and chlorination and 2 h post the viral challenge, the inoculum titre was reduced by 2.25 ± 0.33 and ≥4.36 ± 0.23 log10 TCID50 on non-porous and porous surfaces, respectively. The half-life of the virus was shorter (13.86 min) on a HaloFilm-coated surface than what has been reported on copper (46.44 min).


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Antiviral Agents/pharmacology , Chlorine/pharmacology , Polymers/pharmacology , Stainless Steel , Copper
SELECTION OF CITATIONS
SEARCH DETAIL